Predicative Implications: A Topological Approach

Amir Akbar Tabatabai

Faculty of Humanities, Utrecht University

TACL 2019, Nice

Gödel-Gentzen's argument: Let's denote the sentence "a is a construction of A" by a:A. Then we have:

Gödel-Gentzen's argument: Let's denote the sentence "a is a construction of A" by a: A. Then we have:

• By BHK interpretation $f: A \rightarrow B$ iff $\forall a: A [f(a): B]$. But

Gödel-Gentzen's argument: Let's denote the sentence "a is a construction of A" by a: A. Then we have:

- By BHK interpretation $f: A \rightarrow B$ iff $\forall a: A [f(a): B]$. But
- intuitionism validates the modus ponens rule as a rule of construction, i.e., there exists a construction ev(-, -) which reads a construction F: X → Y and x: X to produce ev(F, x): Y.

Gödel-Gentzen's argument: Let's denote the sentence "a is a construction of A" by a:A. Then we have:

- By BHK interpretation $f: A \rightarrow B$ iff $\forall a: A [f(a): B]$. But
- intuitionism validates the modus ponens rule as a rule of construction, i.e., there exists a construction ev(-,-) which reads a construction F: X → Y and x: X to produce ev(F,x): Y.

Therefore, to check that if $f:A\to B$ we have to check the condition f(a):B for all a:A, including all ev(F,g) for all $g:A\to B$ and all $F:(A\to B)\to A$. Since the quantifier on g also refers to f itself, the definition would be impredicative.

Gödel-Gentzen's argument: Let's denote the sentence "a is a construction of A" by a:A. Then we have:

- By BHK interpretation $f: A \rightarrow B$ iff $\forall a: A [f(a): B]$. But
- intuitionism validates the modus ponens rule as a rule of construction, i.e., there exists a construction ev(-, -) which reads a construction F: X → Y and x: X to produce ev(F,x): Y.

Therefore, to check that if $f:A\to B$ we have to check the condition f(a):B for all a:A, including all ev(F,g) for all $g:A\to B$ and all $F:(A\to B)\to A$. Since the quantifier on g also refers to f itself, the definition would be impredicative.

How to solve the impredicativity?

Exclude modus ponens from the logic and reflexivity condition from the Kripke models. Work with the transitive (serial) persistent Kripke models.

A General Notion of Implication

Definition

Let $(A, \leq, \wedge, 1)$ be a bounded meet-semilatice. By an implication \rightarrow : $A^{op} \times A \Rightarrow A$ we mean any function with the following properties:

- (i) If $a \leq b$ then $a \rightarrow b = 1$,
- (ii) $(a \rightarrow b) \land (b \rightarrow c) \leq (a \rightarrow c)$,
- (iii) $(a \rightarrow b) \land (a \rightarrow c) \leq (a \rightarrow b \land c)$.

If the converse of (i) also holds, i.e. if $a \to b = 1$ implies $a \le b$, then the implication is called an internal order. Moreover, the structure $(A, \le, \land, 1, \to)$ is called a strong algebra if \to is an implication and a closed algebra if \to is an internal order.

A General Notion of Implication

Definition

Let $(A, \leq, \wedge, 1)$ be a bounded meet-semilatice. By an implication \rightarrow : $A^{op} \times A \Rightarrow A$ we mean any function with the following properties:

- (i) If $a \leq b$ then $a \rightarrow b = 1$,
- (ii) $(a \rightarrow b) \land (b \rightarrow c) \leq (a \rightarrow c)$,
- (iii) $(a \rightarrow b) \land (a \rightarrow c) \leq (a \rightarrow b \land c)$.

If the converse of (i) also holds, i.e. if $a \to b = 1$ implies $a \le b$, then the implication is called an internal order. Moreover, the structure $(A, \le, \land, 1, \to)$ is called a strong algebra if \to is an implication and a closed algebra if \to is an internal order.

Example

For a bounded meet-semilattice A, for all $a,b\in A$ define $a\to b=1$. Then \to is an implication.

Some Examples

Example

Let A be a non-trivial bounded meet-semilattice. Pick $x \neq 1$ and define $a \to_{\times} b = 1$ if $a \leq b$ and otherwise $a \to_{\times} b = x$. Then \to_{\times} is an internal order.

Some Examples

Example

Let A be a non-trivial bounded meet-semilattice. Pick $x \neq 1$ and define $a \to_{\times} b = 1$ if $a \leq b$ and otherwise $a \to_{\times} b = x$. Then \to_{\times} is an internal order.

Definition

Let X be a locale and $J: X \to X$ be an increasing, join preserving function. Then the pair (X, J) is called a modal space.

Some Examples

Example

Let A be a non-trivial bounded meet-semilattice. Pick $x \neq 1$ and define $a \to_{\times} b = 1$ if $a \leq b$ and otherwise $a \to_{\times} b = x$. Then \to_{\times} is an internal order.

Definition

Let X be a locale and $J: X \to X$ be an increasing, join preserving function. Then the pair (X, J) is called a modal space.

Example

Let (X,J) be a modal space. Define \to_J as $a\to_J b=\bigvee\{c|Jc \land a\leq b\}$, i.e, as the right adjoint in the pair $J(-)\land a\dashv a\to_J (-)$. Then (X,\to) is a strong algebra. If J1=1 the algebra is also closed.

Modal Space Generates an Implication

$$\frac{a \le b}{\frac{J1 \land a \le b}{1 \le a \to b}} \qquad \frac{1 \le a \to b}{\frac{J1 \land a \le b}{a \le b}} *$$

* Since J1 = 1.

Modal Space Generates an Implication

$$\frac{a \le b}{J1 \land a \le b} \\ 1 \le a \to b$$

$$\frac{1 \le a \to b}{J1 \land a \le b} *$$

* Since J1 = 1.

For internal transitivity we have:

Kripke Frame as a Modal Space

Example

Assume that (W, R) is a relational frame, i.e., $R \subseteq W \times W$. Pick the discrete topology and define $J : P(W) \to P(W)$ as $J(U) = \{x | \exists y \in U \ R(y, x)\}$. Since J is trivially monotone and join preserving, (P(W), J) is a modal space.

Kripke Frame as a Modal Space

Example

Assume that (W,R) is a relational frame, i.e., $R \subseteq W \times W$. Pick the discrete topology and define $J: P(W) \to P(W)$ as $J(U) = \{x | \exists y \in U \ R(y,x)\}$. Since J is trivially monotone and join preserving, (P(W),J) is a modal space.

In case $R \subseteq W \times W$ is transitive it is possible to change P(W) by UP(W), the set of all upsets of W. Then, ((W, UP(W)), J) is another modal space arising from R.

• Opens of a space = The propositions we can affirmatively know.

- Opens of a space = The propositions we can affirmatively know.
- Interpret Ju as the proposition "u happened before". Diamond type modality.

- Opens of a space = The propositions we can affirmatively know.
- Interpret Ju as the proposition "u happened before". Diamond type modality.
- The adjunction captures the predicative implication. Namely

$$Jw \wedge u \leq v \Leftrightarrow w \leq u \rightarrow v$$

means that $u \to v$ is provable by w iff the fact that "w happened before" together with u, implies v.

- Opens of a space = The propositions we can affirmatively know.
- Interpret Ju as the proposition "u happened before". Diamond type modality.
- The adjunction captures the predicative implication. Namely

$$Jw \wedge u \leq v \Leftrightarrow w \leq u \rightarrow v$$

means that $u \to v$ is provable by w iff the fact that "w happened before" together with u, implies v.

• This time lag makes a delay between introducing an implication, and using it in the applications. For instance, $u \wedge (u \rightarrow v)$ does not necessarily imply v, but if $u \rightarrow v$ has been proved before, that is if we have $u \wedge J(u \rightarrow v)$, then we can prove v.

- Opens of a space = The propositions we can affirmatively know.
- Interpret Ju as the proposition "u happened before". Diamond type modality.
- The adjunction captures the predicative implication. Namely

$$Jw \wedge u \leq v \Leftrightarrow w \leq u \rightarrow v$$

means that $u \to v$ is provable by w iff the fact that "w happened before" together with u, implies v.

- This time lag makes a delay between introducing an implication, and using it in the applications. For instance, $u \wedge (u \rightarrow v)$ does not necessarily imply v, but if $u \rightarrow v$ has been proved before, that is if we have $u \wedge J(u \rightarrow v)$, then we can prove v.
- Note that this interpretation also validates $Ja \le a$ that we do not have in an arbitrary modal space.

The Roles of Modal Spaces: A Representation

The second specific role of the modal spaces is the topological representation that they provide for any implication:

The Roles of Modal Spaces: A Representation

The second specific role of the modal spaces is the topological representation that they provide for any implication:

Representation Theorem (A., Alizadeh, Memarzadeh)

If A is a strong algebra then there exists a modal space X such that A is embedable in X as a strong algebra.

The Roles of Modal Spaces: A Representation

The second specific role of the modal spaces is the topological representation that they provide for any implication:

Representation Theorem (A., Alizadeh, Memarzadeh)

If A is a strong algebra then there exists a modal space X such that A is embedable in X as a strong algebra.

Philosophical Consequence

Any implication is a predicative implication enlarging the domain of the discourse.

Predicative Logics

Let \mathcal{L}_I be the usual language of propositional logic with a unary modal operator J. Define mJ as usual natural deduction rules for all connectives except implication (and hence negation) plus:

Structural Rules:

$$F \frac{\Gamma \vdash A}{J\Gamma \vdash JA} \qquad {\it cut} \frac{\Gamma \vdash A \qquad \Pi, A \vdash B}{\Gamma, \Pi \vdash B}$$

Propositional Rules:

$$\rightarrow \varepsilon \frac{\Gamma \vdash A \qquad \Pi \vdash J(A \rightarrow B)}{\Gamma, \Pi \vdash B} \rightarrow I \frac{J\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B}$$

Note that in the rules $\to I$ and F, Γ can have exactly one element.

More Predicative Logics

Consider the following rules:

Additional Rules:

$$SCOJ \xrightarrow{JA \vdash \bot} COJ \xrightarrow{\Gamma \vdash A} J \xrightarrow{\Gamma \vdash JA}$$

Then define:

- J = mJ + J
- CoJ = mJ + CoJ
- sCoJ = mJ + sCoJ
- sI = mJ + J + sCoJ

Topological/Kripke Semantics

Definition

A topological model is a tuple (X, J, V) such that (X, J) is a modal space and $V : \mathcal{L}_J \to X$ is a valuation function such that:

- (i) $V(\top) = 1$ and $V(\bot) = 0$.
- (ii) $V(A \wedge B) = V(A) \wedge V(B)$.
- (iii) $V(A \vee B) = V(A) \vee V(B)$.
- (iv) $V(A \rightarrow B) = V(A) \rightarrow_J V(B)$.
- (v) V(JA) = JV(A).

We say $(X, J, V) \models \Gamma \Rightarrow A$ when $\bigwedge_{\gamma \in \Gamma} V(\gamma) \leq V(A)$ and $(X, J) \models \Gamma \Rightarrow A$ when for all V, $(X, J, V) \models \Gamma \Rightarrow A$.

Topological/Kripke Semantics

Definition

A topological model is a tuple (X, J, V) such that (X, J) is a modal space and $V : \mathcal{L}_J \to X$ is a valuation function such that:

- (i) $V(\top) = 1$ and $V(\bot) = 0$.
- (ii) $V(A \wedge B) = V(A) \wedge V(B)$.
- (iii) $V(A \vee B) = V(A) \vee V(B)$.
- (iv) $V(A \rightarrow B) = V(A) \rightarrow_J V(B)$.
- (v) V(JA) = JV(A).

We say $(X, J, V) \models \Gamma \Rightarrow A$ when $\bigwedge_{\gamma \in \Gamma} V(\gamma) \leq V(A)$ and $(X, J) \models \Gamma \Rightarrow A$ when for all V, $(X, J, V) \models \Gamma \Rightarrow A$.

Interpreting $x \Vdash JA$ as $\exists y(y,x) \in R \ y \Vdash A$, we can develop a Kripke semantics for the language and since Kripke frames are examples of modal spaces, this semantics is a special kind of topological semantics.

Some Classes of Modal Spaces

Definition

- (i) The class **MS** consists of all modal spaces.
- (ii) A modal space is called semi-cotemporal if Ja = 0 implies a = 0. Denote the set of these spaces by **sCoTS**.
- (iii) A modal space is called temporal if $J(a) \le a$. Denote the set of these spaces by **TS**.
- (iv) A modal space is called cotemporal if $a \le J(a)$. Denote the set of these spaces by **CoTS**.

Moreover, by sS we mean $sCoTS \cap TS$ and by S we mean $TS \cap T$.

Topological/Kripke Semantics

Soundness-Completeness Theorem

- (i) $\Gamma \vdash_{mJ} A$ iff $MS \vDash \Gamma \Rightarrow A$ iff $\Gamma \Rightarrow A$ is valid in all Kripke models.
- (ii) $\Gamma \vdash_{\mathsf{sCoJ}} A$ iff $\mathsf{sCoTS} \vDash \Gamma \Rightarrow A$ iff $\Gamma \Rightarrow A$ is valid in all serial Kripke models.
- (iii) $\Gamma \vdash_{\mathsf{CoJ}} A$ iff $\mathsf{CoTS} \vDash \Gamma \Rightarrow A$ iff $\Gamma \Rightarrow A$ is valid in all reflexive Kripke models.
- (iv) $\Gamma \vdash_{\mathbf{J}} A$ iff $\mathbf{TS} \vDash \Gamma \Rightarrow A$ iff $\Gamma \Rightarrow A$ is valid in all transitive persistent Kripke models.
- (v) $\Gamma \vdash_{sl} A$ iff $sS \models \Gamma \Rightarrow A$ iff $\Gamma \Rightarrow A$ is valid in all transitive serial persistent Kripke models.
- (vi) $\Gamma \vdash_{\mathsf{IPC}} A$ iff $\mathbf{S} \vDash \Gamma \Rightarrow A$ iff $\Gamma \Rightarrow A$ is valid in all transitive reflexive persistent Kripke models.

Embedding Intuitionistic Implication into Predicative Ones

Theorem

Let (X, J) be a modal space and define $\Box a = 1 \rightarrow a$. Then the set $J\Box X$ is a Heyting algebra.

Embedding Intuitionistic Implication into Predicative Ones

Theorem

Let (X, J) be a modal space and define $\Box a = 1 \rightarrow a$. Then the set $J\Box X$ is a Heyting algebra.

Definition

Define the translation $(-)^j:\mathcal{L}\to\mathcal{L}_J$ as the following:

- (i) $p^j = J \square p$, $\perp^j = \bot$ and $\top^j = J \top$.
- $(ii) (A \wedge B)^j = J \square (A^j \wedge B^j).$
- (iii) $(A \lor B)^j = A^j \lor B^j$.
- (iv) $(A \rightarrow B)^j = J(A^j \rightarrow B^j)$.

Embedding Intuitionistic Implication into Predicative Ones

Theorem,

Let (X, J) be a modal space and define $\Box a = 1 \rightarrow a$. Then the set $J\Box X$ is a Heyting algebra.

Definition

Define the translation $(-)^j:\mathcal{L}\to\mathcal{L}_J$ as the following:

- (i) $p^j = J \square p$, $\perp^j = \bot$ and $\top^j = J \top$.
- $(ii) (A \wedge B)^j = J \square (A^j \wedge B^j).$
- (iii) $(A \lor B)^j = A^j \lor B^j$.
- (iv) $(A \rightarrow B)^j = J(A^j \rightarrow B^j)$.

Theorem

For any $A \in \mathcal{L}$, $\Gamma \vdash_{IPC} A$ iff $\Gamma^{j} \vdash_{mJ} A^{j}$.

Algebraic Categorical

Algebraic	Categorical
Implication	Exponential Object

Algebraic	Categorical
Implication	Exponential Object
Internal Order	Internal Hom

Algebraic	Categorical
Implication	Exponential Object
Internal Order	Internal Hom
Modal Spaces	Modal Grothendieck Topoi

Algebraic	Categorical
Implication	Exponential Object
Internal Order	Internal Hom
Modal Spaces	Modal Grothendieck Topoi
Representation by Modal Spaces	Representation by Modal Gr Topoi

Algebraic	Categorical
Implication	Exponential Object
Internal Order	Internal Hom
Modal Spaces	Modal Grothendieck Topoi
Representation by Modal Spaces	Representation by Modal Gr Topoi
Predicative Logics	Predicative Type Theories

Thank you for your attention!